\(A=1+2+2^2+....+2^{2013}\)
\(2A=2+2^2+....+2^{2013}\)
\(2A-A=\left(2+2^2+....+2^{2013}\right)-\left(1+2+2^2+....+2^{2012}\right)\)
\(\Rightarrow A=2^{2013}-1\)
Ta có : \(A=2^{2013}-1\)và \(B=2^{2014}-1\)
Vì \(2^{2013}-1< 2^{2014}-1\)nên \(A< B\)
Đúng 0
Bình luận (0)