LV

so sánh A = 1/10 + 1/15 + 1/21 + ...  +1/66 VÀ B = 1/6 + 1/10 + 1/15 +... +1/55

HS
18 tháng 4 2019 lúc 19:13

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{66}\)

\(\frac{A}{2}=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)

\(\frac{A}{2}=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)

\(\frac{A}{2}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)

\(\frac{A}{2}=\frac{1}{4}-\frac{1}{12}\)

\(\Rightarrow A=\frac{2}{4}-\frac{2}{12}=\frac{16}{48}\)

\(B=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\)

\(\frac{B}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}\)

\(\frac{B}{2}=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{10\cdot11}\)

\(\frac{B}{2}=\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(\frac{B}{2}=\frac{1}{3}-\frac{1}{11}\)

\(\Rightarrow B=\frac{2}{3}-\frac{2}{11}=\frac{16}{33}\)

Mà \(\frac{16}{48}< \frac{16}{33}\Rightarrow A< B\)

Vậy : A < B

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
CK
Xem chi tiết
LP
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
DQ
Xem chi tiết
PP
Xem chi tiết
EG
Xem chi tiết
HT
Xem chi tiết