\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{66}\)
\(\frac{A}{2}=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)
\(\frac{A}{2}=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)
\(\frac{A}{2}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(\frac{A}{2}=\frac{1}{4}-\frac{1}{12}\)
\(\Rightarrow A=\frac{2}{4}-\frac{2}{12}=\frac{16}{48}\)
\(B=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\)
\(\frac{B}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}\)
\(\frac{B}{2}=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{10\cdot11}\)
\(\frac{B}{2}=\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(\frac{B}{2}=\frac{1}{3}-\frac{1}{11}\)
\(\Rightarrow B=\frac{2}{3}-\frac{2}{11}=\frac{16}{33}\)
Mà \(\frac{16}{48}< \frac{16}{33}\Rightarrow A< B\)
Vậy : A < B