\(=\left(2^5\right)^{200}\)\(và\)\(\left(5^2\right)^{200}\)
\(\Rightarrow32^{200}>25^{200}\)\(\Rightarrow2^{1000}>5^{400}\)
Ta có:
2\(^{1000}\)=2\(^{10\cdot100}\)=(2\(^{10}\))\(^{100}\)=1024\(^{100}\)
5\(^{400}\)=5\(^{4\cdot100}\)=(5\(^4\))\(^{100}\)=625\(^{100}\)
Vì 1024<625 nên 1024\(^{100}\)<625\(^{100}\)Hay 2\(^{1000}\)<5\(^{400}\)