Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TQ
So sánh 2 phân số : \(\frac{n}{n+3}và\frac{n+1}{n+2}\) ( n \(\in\) N*)
H24
18 tháng 9 2017 lúc 15:38

n/n+3=n:(n+3)=n:n+n:3=1+n:3

n+1/n+2=(n+1):(n+2)=(n+1):n+(n+1):(n+2)=1+n+n/2+1/2=3/2+3n/2=3(1+n):2

Vì ta thấy rõ 3(1+n):2 > 1+n :3 

Hay n/n+3 < n+1/n+2

Bình luận (0)
PD
18 tháng 9 2017 lúc 15:45

Ta xét 2 phân số sau thì có :

\(\frac{n}{n+3}=\frac{n+3-3}{n+3}=\frac{n+3}{n+3}-\frac{3}{n+3}=1-\frac{3}{n+3}\)

\(\frac{n+1}{n+2}=\frac{n+2-1}{n+2}=\frac{n+2}{n+2}-\frac{1}{n+2}=1-\frac{1}{n+2}\)

Để so sánh 2 phân số trên ta so sánh\(\frac{3}{n+3};\frac{1}{n+2}\)

Quy đồng lên ta có :

\(\frac{3}{n+3}=\frac{3\left(n+2\right)}{\left(n+3\right)\left(n+2\right)}=\frac{3n+6}{\left(n+3\right)\left(n+2\right)}\)

\(\frac{1}{n+2}=\frac{n+3}{\left(n+2\right)\left(n+3\right)}\)

Mà 3n+6>n+3

\(\Rightarrow\frac{3}{n+3}>\frac{1}{n+2}\)

\(\Rightarrow1-\frac{3}{n+3}< 1-\frac{1}{n+2}\)

\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)

Bình luận (0)
HP
12 tháng 2 2018 lúc 19:56

Mọi người làm vại chi cho phức tạp.

Ta có: \(\frac{n}{n+3}< \frac{n}{n+2}\) (vì \(n+3>n+2\))

Và \(\frac{n}{n+2}< \frac{n+1}{n+2}\)(vì \(n< n+1\))

Theo tính chất bắc cầu suy ra \(\frac{n}{n+3}< \frac{n+1}{n+2}\)

Bình luận (0)

Các câu hỏi tương tự
PK
Xem chi tiết
CN
Xem chi tiết
NN
Xem chi tiết
NU
Xem chi tiết
AT
Xem chi tiết
NG
Xem chi tiết
MH
Xem chi tiết
PO
Xem chi tiết
VH
Xem chi tiết