So sánh P với 1/2 biết P=3/(1!+2!+3!) + 4/(2!+3!+4!) + ...+ 2017/(2015!+2016!+2017!) = 2
so sánh A=1/2-1/22+1/23-1/24+.......+1/22015-1/22016 với 1/3
So sánh A với 1
A=1/1^2*2^2+5/2^2*3^2+7/3^2*4^2+...........+19/2015^2*2016*2
so sánh biểu thức P với \(\frac{1}{2}\)biết
\(P=\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+...+\frac{2017}{2015!+2016!+2017!}\)(với n!=1.2.3...n)
Cho A= 1/2+1/2^2+1/2^3+1/2^4+.....+1/2^2015+1/2^2016.So sánh A vs 1
Cho S=1/5+2/5^2+3/5^3+4/5^4+....+2015/5^2015 . Hãy so sánh S với 1/3
so sánh
B= 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2015 với 1/2
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2017 B = 1/2016 + 2/2015 +3/2014+ ...+ 2015/2 + 2016/1 Tính B : A
chứng tỏ \(\frac{10^{2016}+2^3}{9}\) là số tự nhiên
So sánh A=\(\left(1+\frac{1}{2016}\right)\left(1+\frac{1}{2016^2}\right)\left(1+\frac{1}{2016^3}\right)...\left(1+\frac{1}{2016^{2017}}\right)\)
\(B=\frac{2016^2-1}{2015^2-1}\)