Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\)
=> \(A=2A-A=1-\frac{1}{2^{50}}< 1\)
=> \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}< 1\)
\(\text{Đ}\text{ặt}\) \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{50}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}\)
\(\Rightarrow2A-A=A=1-\frac{1}{2^{50}}< 1\)
Đặt \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{50}}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{51}}\)
\(\Rightarrow\frac{1}{2}S-S=-\frac{1}{2}S=\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{51}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{50}}\right)\)
\(\Rightarrow-\frac{1}{2}S=\frac{1}{2^{51}}-\frac{1}{2^{50}}\)
ờ tính ra ntn rồi so sánh :)