\(F=\frac{1996^3-1}{1996^2+1997}=\frac{\left(1996-1\right)\left(1996^2+1996+1\right)}{1996^2+1997}=\frac{1995.\left(1996^2+1997\right)}{1996^2+1997}=1995\)
E = \(\frac{1995^3}{1995^2-1994}=\frac{1995^3+1-1}{1995^2-1994}=\frac{\left(1995+1\right)\left(1995^2-1995+1\right)-1}{1995^2-1994}\)
=\(\frac{1996\left(1995^2-1994\right)-1}{1995^2-1994}=1996-\frac{1}{1995^2-1994}\)
Vì \(1995^2-1994>0\) => \(\frac{1}{1995^2-1994}-1\) => \(1996-\frac{1}{1995^2-1994}>1996-1\)
HAy E > F