Gọi 3 phần đó là x,y,z (phần này hình như đề cho rùi nhưng mk nói lại)
Theo bài ra, ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\) và x3 + y3 + z3 = 2456
và: \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\Rightarrow\)\(\frac{x^3}{\left(\frac{1}{2}\right)^3}=\frac{y^3}{\left(\frac{1}{3}\right)^3}=\frac{z^3}{\left(\frac{1}{4}\right)^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x^3}{\left(\frac{1}{2}\right)^3}=\frac{y^3}{\left(\frac{1}{3}\right)^3}=\frac{z^3}{\left(\frac{1}{4}\right)^3}=\frac{x^3+y^3+z^3}{\left(\frac{1}{2}\right)^3+\left(\frac{1}{3}\right)^3+\left(\frac{1}{4}\right)^3}=\frac{2456}{\frac{307}{1728}}=13824\)
suy ra: \(\frac{x^3}{\left(\frac{1}{2}\right)^3}=13824\Rightarrow x^3=13824\cdot\left(\frac{1}{2}\right)^3=1728\Rightarrow x=12\)
\(\frac{y^3}{\left(\frac{1}{3}\right)^3}=13824\Rightarrow y^3=13824\cdot\left(\frac{1}{3}\right)^3=512\Rightarrow y=8\)
\(\frac{z^3}{\left(\frac{1}{4}\right)^3}=13824\Rightarrow z^3=13824\cdot\left(\frac{1}{4}\right)^3=216\Rightarrow z=6\)
Vậy 3 phần đó lần lượt là: 12; 8; 6