Số cặp \(\left(x_0;y_0\right)\) nguyên thỏa mãn phương trình:\(2x^6+y^2-2x^3y=320\) là
Số cặp số \(\left(x_0;y_0\right)\)nguyên thỏa mãn phương trình :
\(2x^6+y^2-2x^3y=320\)
Các bạn hướng dẫn cách giải giúp mình với. Mình cám ơn.
giải chi tiết
cho hệ phương trình \(\left\{{}\begin{matrix}x+y=2\\2x+3y=m\end{matrix}\right.\). Có bao nhiêu số nguyên dương m để hệ đã cho có nghiệm duy nhất là (\(x_0;y_0\)) \(x_0+2y_0< 5\)
Cho hệ phương trình: \(\hept{\begin{cases}mx+y=5\\2x-y=-2\end{cases}}\)
Xác định giá trị của m để nghiệm \(\left(x_0;y_0\right)\)của hệ phương trình thỏa điều kiện: \(x_0+y_0=1\)
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm \(\left(x_0,y_0\right)\) t/m: \(x_0^2+y_0^2=9m\)
giúp mk vs mk cần gấp
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
số cặp x,y thỏa mãn phương trình\(2x^6+y^2-2x^3y=320\)
Tìm tất cả các cặp số nguyên \(\left(x;y\right)\) thỏa mãn phương trình: \(x^2-25=y\left(y+6\right)\)
2) cho hpt: \(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm \(\left(x_0,y_0\right)\) t/m: A= \(x_0^2+y_0^2\) đạt giá trị nhỏ nhất.
giúp mk vs mk cần gấp