H24

S=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}...+\dfrac{1}{9.10}\)

  =\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

  =\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2}-\dfrac{1}{10}\)

  =\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{2}{5}\)

S=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

  =\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

  =\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9}< 1-\dfrac{1}{9}\)

  =\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{8}{9}\)

  Vậy \(\dfrac{2}{5}< S< \dfrac{8}{9}\)

H24
23 tháng 8 2023 lúc 20:36

Trả lời cho bạn đỗ manh tiến

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
MN
Xem chi tiết
NH
Xem chi tiết
N5
Xem chi tiết
DL
Xem chi tiết
NC
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết