HH

S=\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{300}\)

NT
31 tháng 7 2019 lúc 15:34

\(S=\frac{1}{3}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{300}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{6}+\frac{1}{12}+\cdot\cdot\cdot+\frac{1}{600}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{2\times3}+\frac{1}{3\times4}+\cdot\cdot\cdot+\frac{1}{24\times25}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdot\cdot\cdot+\frac{1}{24}-\frac{1}{25}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{25}\)

\(\Rightarrow\frac{1}{2}S=\frac{23}{50}\)

\(\Rightarrow S=\frac{23}{50}:\frac{1}{2}\)

\(\Rightarrow S=\frac{23}{25}\)

Bình luận (0)
XO
31 tháng 7 2019 lúc 15:35

S = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{300}\)

  = \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{600}\right)\)

  = \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{24\times25}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{24}-\frac{1}{25}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{25}\right)\)

\(=2\times\frac{23}{50}\)

\(=\frac{23}{25}\)

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
NT
Xem chi tiết
CL
Xem chi tiết
NH
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết