S = 17 . [ \(1+17+17^2\)] + \(17^3\left[1+17+17^2\right]\)+.......+\(^{17^5\left[1+17+17^3\right]}\)
S = 17 . 307 + 17^3 . 307 +....+ 17^5 .307
S= 307[ 17+17^3 +...+17^5] => S chia hết cho 307
Có tất cả số hạng ở biểu thức S là:
(18-1):1+1=18(số)
Vì 18 chia hết cho 3 nên ta chia biểu thức S làm 6 nhóm mỗi nhóm có 3 số hạng
S=17+17^2+17^3+.......+17^18
S=(17+17^2+17^3)+.......+(17^16+17^17+17^18)
S=17.(1+17+17^2)+........+17^16.(1+17+17^2)
S=17.307+.............+17^16.307
S=307.(17+........+17^16) chia hết cho 307
Vậy S chia hết cho 307
~shizadon~
\(S=17+17^2+17^3+...+17^{18}\)
\(S=\left(17+17^2+17^3\right)+...+\left(17^{16}+17^{17}+17^{18}\right)\)
\(S=71\left(1+17+17^2\right)+...+17^{17}\left(1+17+17^2\right)\)
\(S=17.307+...+17^{17}307\)
\(S=307\left(17+...+17^{17}\right)\)
\(\Rightarrow S⋮307\)
ban dat sai o cho 17 thanh 71 dong thu 2