\(S=1+5+5^2+5^3+...+5^{200}\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{201}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+...+5^{201}\right)-\left(1+5+5^2+...+5^{200}\right)\)
\(\Rightarrow4S=5^{201}-1\)
\(\Rightarrow S=\frac{5^{201}-1}{4}\)
\(S=1+5^2+...+5^{200}\)
\(5S=5+5^3+...+5^{201}\)
\(5S-S=\left(5+5^3+...+5^{201}\right)-\left(1+5^2+...+5^{200}\right)\)
\(4S=5+5^{201}-1+5^2\)
\(4S=5^{201}+29\)
\(S=\frac{5^{201}+29}{4}\)
\(S=1+5^2+5^4+...+5^{200}\)
\(25S=5^2+5^4+5^6+...+5^{202}\)
\(\Rightarrow25S-S=5^{202}-1\)
\(\Leftrightarrow S=\frac{5^{202}-1}{24}\)
S = 1 + 52 + 54 + ..... + 5200
S x 52 = 52 + 54 + 56 + ........ + 5200 + 5202
S = ( 52 + 54 + 56 + ..... + 5202 ) - ( 1 + 52 + 54 + .... + 5200 )
S = ( 5202 - 1 ) : 5
Đọc kĩ đề trước khi làm nhé mọi người :v
S=1+52+54+...+5200
25S=(1+52+54+...+5200).25
25S=52+54+56+...+5202
25S-S=(52+54+56+...+5202)-(1+52+54+...+5200)
24S=1-5202
S=\(\frac{1-5^{202}}{24}\)
vậy S=\(\frac{1-5^{202}}{24}\)