\(S=1+2+2^2+...+2^9\)
\(S=\dfrac{2^{9+1}-1}{2-1}\)
\(S=2^{10}-1=1023\)
\(5.2^8=5.256=1280>1023\)
\(\Rightarrow S< 5.2^8\)
\(S=1+2+2^2+...+2^9\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)
\(\Rightarrow S=2S-S=\left(2+2^2+...+2^{10}\right)-\left(1+2+...+2^9\right)\)
\(S=-1+2^{10}\)hay \(2^{10}-1=1023\)
Mà \(5\cdot2^8=1280\)
Nên \(2^{10}-1< 5\cdot2^8\)
Vậy \(S< 5\cdot2^8\)