S=1/20+(1/21+1/22-1)+(1/22+...+1/23-1)+...+(1/299+...+1/2100-1) (100 cặp)
S<1/20.20+1/21.21+1/22.22+...+1/299.299
S<1+1+1+...+1 (100 số 1)
S<100.1
S<100 (ĐPCM)
S=1/20+(1/21+1/22-1)+(1/22+...+1/23-1)+...+(1/299+...+1/2100-1) (100 cặp)
S<1/20.20+1/21.21+1/22.22+...+1/299.299
S<1+1+1+...+1 (100 số 1)
S<100.1
S<100 (ĐPCM)
Cho S=1+1/2+1/3+.........+1/2^100-1
Chứng minh rằng S<100
s=1/1*2+1/2*3+1/3*4+.......+1/99*100 tìm s
s=1-3+3^2-3^3+...+100/3^100 hãy so sánh s với 1/5
S=1/3+2/3^2+3/3^3+4/3^4+..................+100/3^100. So sánh S với 1/5
\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) so sánh S với \(\dfrac{1}{2}\)
Chứng mình `S<1/5`.
`S=1/3 - 2/(3^2) + 3/(3^3) - 4/(3^4) + ... +99/(3^99) - 100/(3^100)`
S=-1/3+1/3^2-1/3^3+...+1/3^100-1/3^101
tính S
tính tổng
s(1): 1+2+3+.............+999
s(2):1+4+7+..........+79
s(3): 1+10+20+.................+999
s(4): 1+3+5+..........100
S1 = 3/1 + 3/1+2 + 3/1+2+3 +...+3/1+2+3+...+100
S2 = 1/1.2.3 + 31/2.3.4 +...+1/1988.1999.2000
S3= 1/2.17 + 1/3.18 +1/4.19 +...+1/1990.2005
S1=1/2.1991+1/3.1992+...+1/16.2005
Chứng minh rằng : S3/S4=663/5