TQ

s= 1/101 + 1/102 +... 1/130 chứng minh rằng 1/4<s<91/330

T6
28 tháng 1 2022 lúc 15:16

Refer

Bình luận (1)
H24
28 tháng 1 2022 lúc 15:26

Chứng minh \(S< \dfrac{91}{330}\)

\(S=\left(\dfrac{1}{101}+\dfrac{1}{102}+.....+\dfrac{1}{110}\right)+\left(\dfrac{1}{111}+....+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+......+\dfrac{1}{130}\right)\)

\(S< \left(\dfrac{1}{100}+\dfrac{1}{100}......+\dfrac{1}{100}\right)+\left(\dfrac{1}{110}+....+\dfrac{1}{110}\right)+\left(\dfrac{1}{120}+....+\dfrac{1}{120}\right)\)

\(S< \dfrac{66+60+65}{660}\)

\(S< \dfrac{181}{660}< \dfrac{182}{660}\)

+ Hay \(S< \dfrac{91}{330}\left(1\right)\)

Chứng minh \(\dfrac{1}{4}< S\)

\(S>\left(\dfrac{1}{110}\right)+.....+\left(\dfrac{1}{110}\right)+\left(\dfrac{1}{120}\right)+.....+\left(\dfrac{1}{120}\right)+\left(\dfrac{1}{130}\right)+......+\left(\dfrac{1}{130}\right)\)

\(S>\dfrac{1}{110}.10+\dfrac{1}{120}.10+\dfrac{1}{130}.10=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\)

\(S>\dfrac{156+143+132}{1716}\)

+ Hay \(S>\dfrac{1}{4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{1}{4}< S< \dfrac{91}{330}\)

Bình luận (0)
VH
28 tháng 1 2022 lúc 15:27

tk

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
KV
Xem chi tiết
KV
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
NP
Xem chi tiết
KI
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết