TL

RÚT GỌN\(\frac{x^{24}+x^{20}+.......+x^4+1}{x^{26}+x^{24}+......+x^2+1}\)

H24
30 tháng 12 2018 lúc 6:17

\(\frac{x^{24}+x^{20}+...+x^4+1}{x^{26}+x^{24}+...+x^2+1}=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^{24}+x^{20}+...+x^4+1\right)+\left(x^{26}+x^{22}+...+x^2\right)}\)

\(=1-\frac{x^2\left(x^{24}+x^{20}+...+x^4+x^1\right)}{\left(1+x^2\right)\left(x^{24}+2^{20}+...+x^4+1\right)}=1-\frac{x^2}{1+x^2}\)

\(=\frac{1+x^2-x^2}{1+x^2}=\frac{1}{1+x^2}\)

Bình luận (0)
H24
30 tháng 12 2018 lúc 6:19

Hoặc cách khác:

\(\frac{x^{24}+x^{20}+...+x^4+1}{x^{26}+x^{24}+...+x^2+1}=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^{24}+x^{20}+...+x^4+1\right)+x^2\left(x^4+x^{20}+...+x^4+1\right)}\)

\(=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^2+1\right)\left(x^{24}+x^{20}+...+x^4+1\right)}=\frac{1}{x^2+1}\)

Bình luận (0)
H24
16 tháng 3 2019 lúc 19:44

Ở cách thứ 2,mình viết nhầm tí: \(x^2\left(x^4+x^{20}+...+x^4+1\right)\rightarrow x^2\left(x^{24}+x^{20}+...+x^4+1\right)\) giúp mình nha,Đánh thiếu số 2 : một lỗi sai chết người=)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
NH
Xem chi tiết
XP
Xem chi tiết
XP
Xem chi tiết
NL
Xem chi tiết
MA
Xem chi tiết
VL
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết