\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{2^{20}\cdot2^{20}-2^{20}+2^{20}\cdot3^{20}}{2^{20}\cdot3^{20}-3^{20}+3^{20}\cdot3^{20}}=\frac{2^{20}\left[2^{20}-1+3^{20}\right]}{3^{20}\left[2^{20}-1+3^{20}\right]}=\frac{2^{20}}{3^{20}}\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{2^{20}\cdot2^{20}-2^{20}+2^{20}\cdot3^{20}}{2^{20}\cdot3^{20}-3^{20}+3^{20}\cdot3^{20}}=\frac{2^{20}\left[2^{20}-1+3^{20}\right]}{3^{20}\left[2^{20}-1+3^{20}\right]}=\frac{2^{20}}{3^{20}}\)
Rút Gọn :\frac{4^5\cdot 9^4-2\cdot 6^9}{2^{10}\cdot 3^8+6^8\cdot 20}
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
tính:
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)=?
Tính hợp lí:
A=\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
Tính
\(\frac{4^{20}-2^{10}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
Rút gọn biểu thức P= 4*36^4-2*6^9/2^10*3^8+6^8*20
\(\left(\frac{1}{4}\right)^{44}:\left(\frac{1}{2}\right)^{12}\)
\(\left(\frac{3^{17}-81^{11}}{37^{10}.9^{17}}\right)\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)