rút gọn biểu thức sau
g,\(x-2-\sqrt{4-4x+x^2}\) với x ≥ 2
h,\(x-2-\sqrt{4-4x+x^2}\) với x ≤ 2
i,\(3-x+\sqrt{9+9x+x^2}\) với x ≤ - 3
Rút gọn\(\sqrt{x^2-4x+4}\) với x>2
Cho biểu thức C=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\dfrac{x-4}{\sqrt{4x}}\) với x>0 và x khác 4
a) Rút gọn C
b) Tìm x để C>3
* Cho biểu thức P= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\)(với x>0 và x ≠0)
a. Rút gọn P
b. Tìm x để P >3
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\) ( x>= 0; y>=0)
c) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-4}\)
d) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-2}\)
Rút gọn A=\(\frac{\sqrt{x-\sqrt{4x-4}}+\sqrt{x+4\sqrt{4x-4}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
Cho biểu thức A=\(\sqrt{x-\sqrt{x^2-4x+4}}\)
a) Tìm ĐKXĐ
b) Rút gọn A
A = (\(\dfrac{\left(\sqrt{x}\right)}{\sqrt{x}-2}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)) : \(\dfrac{\sqrt{4x}}{x-4}\)
a) Tìm điều kiện xác định
b) Rút gọn A
c) Tìm x để A < 3
Rút gọn các biểu thức sau:
a) $\sqrt{9a^4}$
b) 2$\sqrt{a^{2}}$- 5a (với a<0)
c) $\sqrt{16(1+4x+4x^2)}$ với x $\geq$ $\frac{1}{2}$
d) $\frac{1}{a-3}$$\sqrt{9(a^2-3a+9)}$ với a<3