Rút gọn biểu thức:
\(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}vớia\ge0\)\(\sqrt{5a}.\sqrt{45a}-3avớia\ge0\)\(4\sqrt{16a^6}-6a^3\rightarrow kq2TH\)\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^4}\)\(\sqrt{\frac{27.\left(a-3\right)^2}{48}}vớia< 3\)\(\frac{\sqrt{63y^3}}{\sqrt{7y}}vớiy>0\)\(\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^2}}vớia< 0,b\ne0\)\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}+\sqrt{b^3}}{a-b}\left(a\ge0;b\ge0;a\ne b\right)\)\(\frac{2a+\sqrt{ab}-3b}{2a-5\sqrt{ab}+3b}\left(a,b\ge0;4a\ne9b\right)\)rút gọn các biểu thức sau
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}\)
b) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)với \(a\ge0;b\ge0;a\ne b\)
C/m biểu thức
a)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)=1\)(a,b>0,a\(\ne\)0
b)\(\frac{a-b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=a-b\left(a,b>0,a\ne b\right)\)
c)\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)=4-a\left(a>0,a\ne1\right)\)
d)\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)=\left(1-a\right)^2\left(a\ge0,a\ne1\right)\)
Giải giúp mk với. THứ 3 tuần sau là phải nộp rồi
Rút gọn biểu thức
a) \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\left(\sqrt{a+\sqrt{b}}\right)^2-4\sqrt{ab}}.\dfrac{a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\) \(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
b) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)\(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
HELP ME PLSSSSSSSSSS
C1. Tính:
a) \(\left(3\sqrt{\frac{3}{5}}-\sqrt{\frac{5}{3}}+\sqrt{5}\right)2\sqrt{5}+\frac{2}{3}\sqrt{75}\)
b) \(\left(\sqrt{3}-1\right)^2-\sqrt{\left(1-\sqrt{3}\right)^2}+\sqrt{\left(-3\right)^2.3}\)
C2. Tính
P = \(\frac{a-b}{\sqrt{a}+\sqrt{b}}+\frac{a\sqrt{a}-b\sqrt{b}}{a+b+\sqrt{ab}}\) , \(a\ge0,b\ge0,a\ne b\)
Đề bài: chứng minh đẳng thức:
a) \(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}=1\)với \(a>0,b>0,a\ne b\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a=1\)với \(a\ne1,a\ge0\)
c) \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)với \(x\ge0,x\ne4,x\ne9\)
d) \(\left(\frac{x+1}{x^3+1}-\frac{1}{-x^2+x-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}+1=\frac{x-1}{x+1}\)với\(x\ne0,x\ne-1,x\ne2\)
cmr:
a) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)=1\) (với \(a,b\ge0;a\ne b\))
b \(\frac{2+\sqrt{2}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)
Chứng minh các đẳng thức sau
a) \(\left(\frac{2\sqrt{6}-\sqrt{3}}{2\sqrt{2}-1}+\frac{5+2\sqrt{5}}{2+\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
b) \(\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}=-a\)(Với b<a<0
c)\(\left(\sqrt{a}+\frac{1-a\sqrt{a}}{1-\sqrt{a}}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)với a\(\ge0\),a khác 1
d) \(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right)40\sqrt{15}=600\)
e) \(\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)với x\(\ge0;x\ne1\)
Rút gọn biểu thức
Giải nhanh giúp mk nha!Thanks <3