\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=16x^2\)
Ta thấy: Biểu thức trên có dạng \(\left(a+b\right)^2=a^2+2ab+b^2\)
Áp dụng vào ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(2x+1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=4x^2=\)
\(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left[\left(2x\right)^2-1^2\right]+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)
\(=\left[\left(2x+1\right)+\left(2x-1\right)\right].\left[\left(2x+1\right)-\left(2x-1\right)\right]+2\left(2x+1\right)\left(2x-1\right)\)
\(=4x.2+2\left(2x+1\right)\left(2x-1\right)\)
\(=8x+2.\left(4x^2-1\right).\)