a)\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b)\(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}=\dfrac{2y}{3\left(x+y\right)^2}\)
c)\(\dfrac{2x^2+2x}{x+1}=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d)\(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{x-y}{x+y}\)
a)
\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b)
\(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}=\dfrac{2y}{3\left(x+y\right)^2}\)
c)
\(\dfrac{2x^2+2x}{x+1}=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d)
\(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
\(a)\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
\(b)\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}=\dfrac{2y}{3\left(x+y\right)^2}\)
\(c)\dfrac{2x^2+2x}{x+1}=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
\(d)\dfrac{x^2-xy-x+y}{x^2+xy-x-y}=\dfrac{\left(x^2-x\right)-\left(xy-y\right)}{\left(x^2-x\right)+\left(xy-y\right)}=\dfrac{x\left(x-1\right)-y\left(x-1\right)}{x\left(x-1\right)+y\left(x-1\right)}=\dfrac{\left(x-1\right)\left(x-y\right)}{\left(x-1\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)