ĐKXĐ:
\(x\ge0\text{ và }\sqrt{x}-1\ge0\text{ và }x+1\ne0\)
\(\Leftrightarrow x\ge1\text{ và }x\ne-1\)
\(\left(\frac{x\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right):\frac{\sqrt{x}-1}{x+1}\)
\(=\left(\frac{x\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}+1}\)
\(=\left(\frac{x\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right).\frac{x+1}{\sqrt{x}+1}\)
\(=\frac{x\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}.\frac{x+1}{\sqrt{x}+1}\)
\(=\frac{x\sqrt{x}+\sqrt{x}+1}{x+2\sqrt{x}+1}\)