TT

Rút gọn :  \(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{9}{x^3+x^2y+xy^2}\right).\left(y+\frac{x^2}{x+y}\right)\)

 

MT
13 tháng 8 2015 lúc 10:23

\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{9}{x^3+x^2y+xy^2}\right).\left(y+\frac{x^2}{x+y}\right)\)

\(=\left(\frac{1}{x.\left(x-y\right)}-\frac{3y^2}{x.\left(x^3-y^3\right)}-\frac{9}{x.\left(x^2+xy+y^2\right)}\right).\left(\frac{y.\left(x+y\right)}{x+y}+\frac{x^2}{x+y}\right)\)

\(=\left(\frac{1}{x.\left(x-y\right)}-\frac{3y^2}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{9}{x.\left(x^2+xy+y^2\right)}\right).\left(\frac{y^2+xy}{x+y}+\frac{x^2}{x+y}\right)\)

\(=\left(\frac{x^2+xy+y^2}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3y^2}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{9x-9y}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(\frac{x^2+xy+y^2}{x+y}\right)\)

\(=\frac{x^2+xy-2y^2-9x+9y}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}.\frac{x^2+xy+y^2}{x+y}\)

làm tip nha bận rồi      

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
HN
Xem chi tiết
XT
Xem chi tiết
BT
Xem chi tiết
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
TD
Xem chi tiết