TH1: C\(\ge\)0=>|c|=c
=>\(\dfrac{\sqrt{c^2+2c+1}}{c-1}\)
=\(\dfrac{\sqrt{\left(c+1\right)^2}}{c-1}\)
=\(\dfrac{c+1}{c-1}\)
TH2 c<0=>|c|=-c
=>\(\dfrac{\sqrt{c^2+2c+1}}{1-c}\)
=\(\dfrac{\sqrt{\left(c+1\right)^2}}{1-c}\)
=\(\dfrac{c+1}{1-c}\)
=
TH1: C\(\ge\)0=>|c|=c
=>\(\dfrac{\sqrt{c^2+2c+1}}{c-1}\)
=\(\dfrac{\sqrt{\left(c+1\right)^2}}{c-1}\)
=\(\dfrac{c+1}{c-1}\)
TH2 c<0=>|c|=-c
=>\(\dfrac{\sqrt{c^2+2c+1}}{1-c}\)
=\(\dfrac{\sqrt{\left(c+1\right)^2}}{1-c}\)
=\(\dfrac{c+1}{1-c}\)
=
Bài 2:
Cho biểu thức E= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
a) Rút gọn E
b) Tìm x để E= 2
c) Tính giá trị của E khi x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Cho biểu thức :
\(C=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(1+\dfrac{2}{\sqrt{x}-1}\right)\)
a. Rút gọn C
b. Tìm x để C < -1
Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}+\dfrac{6-7\sqrt{x}}{x-4}\right)\left(\sqrt{x}+2\right)\)
\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{1}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
giúp mình với ạ!mình đang cần gấp
Cho \(C=\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right).\dfrac{1+2\sqrt{a}+a}{\left(1-a\right)^2}+\sqrt{a}\)
với a > 0 , a ≠ 1
a. Rút gọn C
b. Tìm a để C = 3
Rút gọn các biểu thức sau:
\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{1}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
Làm ơn giúp mình với ạ!!mình đang cần gấp lắm!!
Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)
\(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right).\dfrac{\sqrt{x}-1}{x^2}\)
\(C=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-9}\right).\dfrac{2\sqrt{x}+6}{\sqrt{x}-1}\)
\(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(E=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
help
Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)
\(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right).\dfrac{\sqrt{x}-1}{x^2}\)
\(C=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-9}\right).\dfrac{2\sqrt{x}+6}{\sqrt{x}-1}\)
\(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(E=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
help
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
* Rút gọn biểu thức
a. \(\left(2\sqrt{125}-3\sqrt{5}-\sqrt{180}\right):\left(-\sqrt{5}\right)+\sqrt{8}\)
b. \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
c. \(\sqrt{48}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
d.\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}\right)\)