Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
rút gọn
\(B=\frac{\left(2008^2-2014\right)\left(2008^2+4016-3\right).2009}{2005.2007.2010.2011}\)
Tính
\(A=\frac{\left(2008^2-2014\right)\left(2008^2+4016-3\right).2009}{2005.2007.2010.2011}\)
rút gọn biểu thức: ((2008^2 - 2014)(2008^2+4016-3)2009)/(2005.2007.2010.2011)
giúp mik nha
tính B =\(\frac{\left(2018^2-2014\right)\left(2018^2+4016-3\right).2009}{2005.2007.2010.2012}\)
HELP ME:
Cho :\(\left(x+\sqrt{x^2+2008}\right).\left(y+\sqrt{y^2+2008}\right)=2008\)
Tính: S = x2009 + y2009
so sánh 2 số
A=1/2006
B=\(\frac{1}{2008}+\left(\frac{1}{2008}+\frac{1}{2008^2}\right)^2+...+\left(\frac{1}{2008}+\frac{1}{2008^2}+...+\frac{1}{2008^{2007}}\right)^{2007}\)
Tìm nghiệm dương của phương trình:
\(\left(1+x-\sqrt{x^2-1}\right)^{2008}+\left(1+x+\sqrt{x^2-1}\right)^{2008}=2^{2009}\)
Cho các số:\(a_1,a_2,a_3,...,a_{2009}\) được xác định theo công thức sau:
\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\) với n=1,2,3,...,2008
Chứng minh rằng :\(a_1+a_2+a_3+...+a_{2009< \frac{2008}{2010}}\)
rút gọn:
\(A=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)...\left(\frac{3^{2011}}{2014}-81\right)\)