QT

rút gọn \(B=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

TL
24 tháng 5 2015 lúc 20:50

Áp dụng hằng đẳng thức (a+b)3 = a3 + 3a2b + 3ab2 + b3 = a3 + b3 + 3ab.(a +b) ta có: 

\(B^3=20+14\sqrt{2}+20-14\sqrt{2}+3\sqrt[3]{20+14\sqrt{2}}.\sqrt[3]{20-14\sqrt{2}}\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)\)

\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}.B\)

\(B^3=40+3.\sqrt[3]{400-392}.B=40+3.\sqrt[3]{8}.B=40+6B\)

=> B3 - 6B - 40 = 0

<=> B3 - 64 - 6B + 24  = 0

<=> (B - 4 ).(B2 + 4B + 16) - 6.(B - 4) = 0

<=> (B - 4).(B2 + 4B + 16 - 6) = 0 <=> B = 4 hoặc B2 + 4B + 10 = 0

B2 + 4B + 10 = 0 Vô nghiêm vì \(\Delta\) = 16 - 40 = -24 < 0

Vậy B = 4

 

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NK
Xem chi tiết
TM
Xem chi tiết
LH
Xem chi tiết
SD
Xem chi tiết
H24
Xem chi tiết
L2
Xem chi tiết
NM
Xem chi tiết
NT
Xem chi tiết