LD

rút gọn biểu thức:

cho \(A=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2+4^2}}+\sqrt{1+\frac{1}{4^2}+\frac{1}{5^2}}+...+\sqrt{1+\frac{1}{2012^2}+\frac{1}{2013^2}}\)

NN
2 tháng 8 2016 lúc 11:40

CM : \(\sqrt{\left(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\right)^2}=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\) 

\(\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}=\frac{n^2\left[\left(n+1\right)^2+1\right]+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\) = \(\frac{n^2\left(n^2+2n+2\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)

=\(\frac{n^4+2n^2\left(n+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\) = \(\frac{\left(n^2+n+1\right)^2}{\left(n^2+n\right)^2}\) =>\(\sqrt{\left(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\right)}=\frac{n^2+n+1}{n^2+n}\)

\(=1+\frac{1}{n^2+n}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Ta có : 

A = \(\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+\left(1+\frac{1}{4}-\frac{1}{5}\right)+...+\left(1+\frac{1}{2012}-\frac{1}{2013}\right)\)

= 2012 - \(\frac{1}{2013}\) \(\approx\) 2012

 

 

Bình luận (2)

Các câu hỏi tương tự
NT
Xem chi tiết
HX
Xem chi tiết
LY
Xem chi tiết
TN
Xem chi tiết
WR
Xem chi tiết
HX
Xem chi tiết
WR
Xem chi tiết
NA
Xem chi tiết
WR
Xem chi tiết