\(A=\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x+1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{1}{x\left(x+1\right)}\)
Chúc bạn học tốt !!!
Ta có: A = \(\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}\)
=> A = \(\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)
=> A = \(\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)
=> A = \(\frac{x\left(x+3\right)-\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)
=> A = \(\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)
=> A = \(\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)
=> A = \(\frac{1}{x\left(x+1\right)}\) (Đk: x \(\ne\)0 hoặc x \(\ne\)-1)