HT

Rút gọn biểu thức sau A = X+3/X^2-1 - X+1/X^2-X

KS
19 tháng 9 2019 lúc 15:23

\(A=\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)

     \(=\frac{x\left(x+3\right)-\left(x+1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}\)

        \(=\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)

           \(=\frac{1}{x\left(x+1\right)}\)

Chúc bạn học tốt !!!

Bình luận (0)
EC
19 tháng 9 2019 lúc 15:26

Ta có: A = \(\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}\)

=> A = \(\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)

=> A = \(\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

=> A = \(\frac{x\left(x+3\right)-\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

=> A  = \(\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)

=> A = \(\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)

=> A = \(\frac{1}{x\left(x+1\right)}\) (Đk: x \(\ne\)0 hoặc x \(\ne\)-1)

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết