Chọn B.
Ta có: A = (tanx + cotx)2 - ( tanx - cotx)2
= tan2x + 2tanx.cot x + cot2x - ( tan2x - 2tanx.cotx + cot2x)
= 4tanx.cotx = 4.
Chọn B.
Ta có: A = (tanx + cotx)2 - ( tanx - cotx)2
= tan2x + 2tanx.cot x + cot2x - ( tan2x - 2tanx.cotx + cot2x)
= 4tanx.cotx = 4.
\(\sqrt{sin^2x\left(1+cotx\right)+cos^2x\left(1+tanx\right)}\)
Rút gọn giúp tui nha~~
Chứng minh đẳng thức:
tan x + c o t x + tan 3 x + c o t 3 x = 8 cos 2 2 x sin 6 x
Chứng minh đẳng thức sau:
sin2x.tanx+cos2x.cotx+2sinx.cosx=tanx+cotx
Rút gọn các biểu thức sau:
A = sin 2 x - sin x 1 - c o t x + cos 2 x B = 1 + cos x sin x ( 1 - ( 1 - cos x ) 2 sin 2 x )
Cho hệ phương trình: \(\left\{{}\begin{matrix}secx+tanx=\dfrac{22}{7}\\cscx+cotx=\dfrac{m}{n}\end{matrix}\right.\), với \(\dfrac{m}{n}\) tối giản.
Tính \(S=m+n\).
Cho biết cotx = 1/2. Giá trị biểu thức A= 2 sin 2 x - sin x . cos x - cos 2 x bằng
A. 6.
B. 8.
C. 10.
D. 12.
rút gọn bt sau (3.tanx-tan^3x)/(1-3.tan^2x)
a) \(1-cot^4x=\frac{2}{sin^2x}-\frac{1}{sin^4x}\)
b)\(\frac{1-2sinx.cosx}{cos^2-sin^2}\)\(=\frac{1-tanx}{1+tanx}\)\(\)
c)\(\frac{sin^2x}{sinx-cosx}+\frac{sinx+cosx}{1-tanx}=sinx+cosx\)
d)\(\sqrt{\frac{1+cosx}{1-cosx}}-\sqrt{\frac{1-cosx}{1+cosx}}=\frac{2.cosx}{|sin|}\)
e)\(tan^3x+tan^2x+tanx+1=\frac{sinx+cosx}{cos^3x}\)
Cho 0 < α < π/2. Biểu thức S = sin 4 α - 2 sin 2 α sin 4 α + 2 sin 2 α có thể rút gọn thành biểu thức nào sau đây?
A. - tan 2 α B. tanα
C. c o t 2 α D. cotα