bài này cũng tương tự câu trên vậy tách màu ra là tính được mà . đâu có khó gì đâu bạn .
Biến đổi vế trái :vvv
\(VT=\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}\)
\(=\frac{a+b}{b^2}.\sqrt{\frac{\left(ab^2\right)^2}{\left(a+b\right)^2}}\)
\(=\frac{a+b}{b^2}.\frac{\left|ab^2\right|}{\left|a+b\right|}\)
\(=\frac{a+b}{b^2}.\frac{b^2.\left|a\right|}{a+b}=\left|a\right|=VP\left(đpcm\right)\)
( Vì a + b > 0 nên | a + b | = a + b ; b2 > 0 )