Violympic toán 8

PH

Rút gọn biểu thức
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)+ \(\dfrac{3}{\sqrt{x}}-\dfrac{5\sqrt{x}+3}{x+\sqrt{x}}\) Với \(x>0\)

DD
1 tháng 6 2018 lúc 8:31

\(A=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}}-\dfrac{5\sqrt{x}+3}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}.\sqrt{x}+3\left(\sqrt{x}+1\right)-\left(5\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+3\sqrt{x}+3-5\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

Bình luận (0)
TL
1 tháng 6 2018 lúc 8:39

\(A=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}}-\dfrac{5\sqrt{x}+3}{x+\sqrt{x}}\\ ĐKXĐ:x>0;x\ne1\\ \Rightarrow A=\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{5\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{x+3\sqrt{x}+3-5\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

Vậy \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) với \(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

Bình luận (8)

Các câu hỏi tương tự
NO
Xem chi tiết
NH
Xem chi tiết
NC
Xem chi tiết
MM
Xem chi tiết
KC
Xem chi tiết
KC
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
FG
Xem chi tiết