Violympic toán 8

NO

CHo biểu thức B =\(\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\)(x>o)

a) Rút gọn B

b)Chứng tỏ B>0

c) Tìm GTNN của B

BB
16 tháng 7 2018 lúc 15:58

a) \(B=\)\(\dfrac{\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\) ĐKXĐ: x>0

=\(\dfrac{\dfrac{\sqrt{x}+1+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\)

\(=\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}:\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

=\(\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b)

Theo câu a ) ta có :

B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

Xét : \(x+\sqrt{x}+1=x+2.\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

=\(\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (với mọi x>0) (1)

Xét:

\(\sqrt{x}>0\) (2)

Từ (1) và (2) =>\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}>0\) (ĐPCM)

c) B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( theo câu a)

=\(\dfrac{x}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+1\)

=\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\)

Áp dụng BĐT cô si cho \(\sqrt{x}\)\(\dfrac{1}{\sqrt{x}}\)

Ta có : \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}\)

=2

Vậy :\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge2+1\)

Hay\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge3\)

Min B= 3 Dấu "=" xảy ra khi x=1

CHÚC BẠN HỌC TỐThiuhiu

Bình luận (2)

Các câu hỏi tương tự
KC
Xem chi tiết
MM
Xem chi tiết
KC
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
FG
Xem chi tiết
NC
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết