Chương 6: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC

LV

Rút gọn biểu thức: 3(sin8x - cos8x) + 4(cos6x - 2sin6x) + 6sin4

 

1G
19 tháng 8 2021 lúc 13:38

M = 3(sin^8x-cos^8x) + 4(cos^6x-2sin^6x)+6sin^4x
Ta có:
sin^8(x) - cos^8(x) = [sin^4(x) ]² - [cos^4(x)]²
= (sin²x + cos²x)(sin²x -cos²x).[ sin^4(x) + cos^4(x) ]
= (sin²x -cos²x)[ sin^4(x) + cos^4(x) ]
= sin^6(x) - cos^6(x) + sin²x.cos^4(x) -cos²x.sin^4(x)
Lúc đó M viết lại là:
M = 3.[sin^6(x) - cos^6(x) + sin²x.cos^4(x) -cos²x.sin^4(x) ] + 4.[ cos^6(x) -2sin^6(x) ] + 6sin^4(x)
M = -5sin^6(x) + cos^6(x) -3sin^4(x).cos²x + 3sin²x.cos^4(x) +6sin^4(x)
M = -3sin^(6)x - 3cos²x.sin^4(x) + cos^4(x).sin²x + cos^6(x) - 2sin^6(x) + 2sin²x.cos^4(x) + 6sin^4(x)
M = -3sin^4(x).(sin²x + cos²x ) + cos^4(x).[sin²x + cos²x ] -2sin²x.[sin^4(x) - cos^4(x) ] + 6sin^4(x)
M = 3sin^4(x) + cos^4(x) -2sin²x.[sin²x - cos²x]
M = 3sin^4(x) + cos^4(x) -2sin^4(x) + 2sin²x.cos²x
M = sin^4(x) + 2sin²x.cos²x + cos^4(x)
M = [sin²x + cos²x ]² = 1

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
LS
Xem chi tiết
NH
Xem chi tiết
KR
Xem chi tiết
NH
Xem chi tiết
NQ
Xem chi tiết
QA
Xem chi tiết