\(=\frac{1-\sqrt{3}}{\sqrt{3}+3}=1-2\frac{\sqrt{3}}{3}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(=\frac{1-\sqrt{3}}{\sqrt{3}+3}=1-2\frac{\sqrt{3}}{3}\)
Rút gọn biểu thức
a) 2√5 +√(1-√5)^2
b)1/√3+1 + 1/√3-1 -2√3
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
Rút gọn biểu thức sau:
A=\(\dfrac{2}{\sqrt{2} }-\dfrac{1}{\sqrt{3} -1}+ \dfrac{2}{\sqrt{3}-1 } \)
Câu 1
Rút gọn biểu thức A = √24 + 2√54 - 2√96
Câu 2
Rút gọn biểu thức A = 3√48 + √75 - 2√108
Câu 3
Rút gọn biểu thức A = √18 - 2√50 + 3√8
Câu 4
Tính giá trị biểu thức A = √18 + 2√8 - \(\dfrac{1}{5}\)√50
Câu 5
Rút gọn biểu thức M = √20 - √45 + √5
Câu 6
Tính giá trị biểu thức A = √5.(√5-3) + √45
Rút gọn biểu thức
(2√3-3√2)/√6-(3-√2)/(1-√2)+3/√3
1) Rút gọn biểu thức sau :
1. \(\dfrac{1}{\sqrt{3}+1}\) + \(\dfrac{1}{\sqrt{3}-1}\) - 2\(\sqrt{3}\)
Bài 1.Rút gọn A = \(\sqrt{x^2+\dfrac{2x^2}{3}}\) với x<0
Bài 2.Rút gọn biểu thức \(\left(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{\sqrt{30}-\sqrt{6}}{\sqrt{5}-1}\right)\):\(\dfrac{2}{2\sqrt{5}-\sqrt{6}}\)
Bài 3.Cho ba biểu thức A = a\(\sqrt{b}\) + b\(\sqrt{a}\);B = \(a\sqrt{a}-b\sqrt{b}\) ;C = a-b.Trong ba biểu thức trên biểu thức bằng biểu thức \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\) với a,b>0
Bài 7.Cho B = \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{98}+\sqrt{99}}+\dfrac{1}{\sqrt{99}+\sqrt{100}}\).Giá trị của biểu thức B là
Bài 8.Gọi M là giá trị nhỏ nhất của \(\dfrac{\sqrt{x}+1}{\sqrt{x}+4}\) và N là giá trị lớn nhất của \(\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\).Tìm M và N
Giúp mình với!Mình đang cần gấp
Cho biểu thức
A=2/√x -1 +2(√x +1)/x+√x +1 +x-10√x +3/√x^3 -1
1. Với giá trị nào của x thì biểu thức có nghĩa
2. Rút gọn biểu thức
Rút gọn biểu thức : \(\sqrt{3\sqrt{7}-1+2\sqrt{12-3\sqrt{7}}}-\sqrt{2\sqrt{7}+1}\)