Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 1
Rút gọn biểu thức A = √24 + 2√54 - 2√96
Câu 2
Rút gọn biểu thức A = 3√48 + √75 - 2√108
Câu 3
Rút gọn biểu thức A = √18 - 2√50 + 3√8
Câu 4
Tính giá trị biểu thức A = √18 + 2√8 - \(\dfrac{1}{5}\)√50
Câu 5
Rút gọn biểu thức M = √20 - √45 + √5
Câu 6
Tính giá trị biểu thức A = √5.(√5-3) + √45
Rút gọn các biểu thức sau :
a) \(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2}\) - \(\sqrt{54}\)
b) \(\dfrac{a+\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\) - a\(\sqrt{\dfrac{1}{a}}\)
c) ( \(\sqrt{28}\) - 2\(\sqrt{3}\) +7) \(\sqrt{7}\) +\(\sqrt{84}\)
rút gọn biểu thức sau
a,\(5\sqrt{48}-4\sqrt{27}-2\sqrt{57}+\sqrt{108}\)
b,\(2\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{20}\)-3\(\sqrt{45}\)-\(\dfrac{1}{2}\sqrt{80}\)
b) 12\(\sqrt{54}\)-\(\dfrac{2}{5}\)\(\sqrt{150}\)+3\(\sqrt{24}\)
Rút gọn các biểu thức sau:
a ) ( 8 − 3 2 + 10 ) 2 − 5 b ) 0 , 2 ( − 10 ) 2 ⋅ 3 + 2 ( 3 − 5 ) 2 c ) 1 2 1 2 − 3 2 ⋅ 2 + 4 5 ⋅ 200 : 1 8 d ) 2 ( 2 − 3 ) 2 + 2 ⋅ ( − 3 ) 2 − 5 ( − 1 ) 4
rút gọn biểu thức:
a)\(\sqrt{54-14\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
b)\(\sqrt{\left(7-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
2 a. rút gọn biểu C = \(\dfrac{2x^{\text{2}}-x}{\text{x }-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b. Rút gọn biểu thức D = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{\text{a}}-1}\right):\dfrac{\sqrt{\text{a}}+1}{a-2\sqrt{a}+1}\)
Vậy khi rút gọn một biểu thức hửu tỉ và một biểu thức chứa căn có tìm điều kiện xác định không?
Rút gọn các biểu thức sau:
a) $\sqrt{9a^4}$
b) 2$\sqrt{a^{2}}$- 5a (với a<0)
c) $\sqrt{16(1+4x+4x^2)}$ với x $\geq$ $\frac{1}{2}$
d) $\frac{1}{a-3}$$\sqrt{9(a^2-3a+9)}$ với a<3
Rút gọn các biểu thức sau:
A = \(\dfrac{3}{2\left(2x-1\right)}\sqrt{8\left(4x^2-2x+1\right)x^4}\)
B = \(\dfrac{a-b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2-2ab+b^2}}\)