MT

Rút gọn B=\(\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\cdot\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)\)

KA
9 tháng 7 2020 lúc 17:05

Trả lời 

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)\)  \(\left(a\ge0.a\ne1\right)\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{1}{\left(a+1\right)^2}-\frac{1}{\left(a-1\right).\left(a+1\right)}\right]\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{a-1-a-1}{\left(a+1\right)^2.\left(a-1\right)}\right]\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.0\)

\(B=\frac{1}{a+1}\)

Vậy \(B=\frac{1}{a+1}\)

Bình luận (0)
 Khách vãng lai đã xóa
2U
9 tháng 7 2020 lúc 19:55

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)ĐK\left(a\ge0;a\ne1\right)\)

\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}-\frac{a^2+1}{\left(a^2-1\right)\left(a^2+1\right)}\right)\)

\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1-a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}\right)\)

\(=\frac{1}{a+1}\)

Vậy \(B=\frac{1}{a+1}\)

Bình luận (0)
 Khách vãng lai đã xóa
2U
10 tháng 7 2020 lúc 9:11

Sửa : \(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)\)

\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{1}{a^2+1}-\frac{1}{a^2-1}\right)\)

\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}-\frac{a^2+1}{\left(a^2-1\right)\left(a^2+1\right)}\right)\)

\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\frac{-2}{\left(a^2-1\right)\left(a^2+1\right)}\)

\(=\frac{1}{a+1}+\frac{\left(a-a^3\right)\left(a^2-1\right)}{\left(a^2+1\right)\left(a^2-1\right)}.\frac{-2}{\left(a^2-1\right)\left(a^2+1\right)}\)

\(=\frac{1}{a+1}-\frac{2\left(a-a^3\right)\left(a^2-1\right)}{\left(a^2+1\right)^2\left(a^2-1\right)^2}\) Lược bớt đi ta lại có : \(=\frac{1}{a+1}-\frac{2\left(a-a^3\right)}{\left(a^2+1\right)^2\left(a^2-1\right)}\)xog. 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MT
Xem chi tiết
KH
Xem chi tiết
HD
Xem chi tiết
NA
Xem chi tiết
ND
Xem chi tiết
HN
Xem chi tiết
PT
Xem chi tiết
VD
Xem chi tiết
NN
Xem chi tiết