DA
Rút gọn A=\(\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
NC
19 tháng 4 2016 lúc 23:04

A=\(\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\) 

A=\(\frac{7}{4}.\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]\) 

A=\(\frac{7}{4}.\left[33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\right]\)

A=\(\frac{7}{4}.\left[33.\left(\frac{1}{3-4}+\frac{1}{4-5}+\frac{1}{5-6}+\frac{1}{6-7}\right)\right]\)

A=\(\frac{7}{4}.\left[33.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\) 

A=\(\frac{7}{4}.\frac{44}{7}\)

A=11

Like cho mình nha bài này viết mỏi tay lắm

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
DA
Xem chi tiết
NH
Xem chi tiết
CL
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết
PH
Xem chi tiết
SD
Xem chi tiết