Rút gọn E=\(\frac{2009.2010-2}{2008+2008.2010}\)+\(\frac{-2009.20102010}{20092009.2010}\)
Cho \(A=\frac{2009.2010-2}{2008+2008.2010};B=\frac{-2009.20102010}{20092009.2010}\). Tính A + B
Cho A = \(\frac{2009.2010-2}{2008+2008.2010}\) và B = \(\frac{-2009.20102010}{20092009.2010}\)
Tính A + B
\(A=\frac{2009.2010-2}{2008+2008.2010}\)
\(B=\frac{-2009.20102010}{20092009.2010}\)
So sánh A và B
Cho A=\(\frac{2009.2010-2}{2008+2008.2010}\); B=\(\frac{-2009.20102010}{20092009.2010}\)
Tính A+B
Cho A= \(\frac{2009.2010-2}{2008+2008.2010}\)
B= \(\frac{-2009.20102010}{20092009.2010}\)
Tính A+B
Cho A=\(\frac{2009.2010-2}{2008+2008.2010}\) và B=\(\frac{-2009.20102010}{20092009.2010}\)
Tính A+B
tinh gia tri :
A = \(\frac{2009.2010-2}{2008+2008.2010}\) ; B = \(\frac{-2009.20102010}{20092009.2010}\)
\(y=\frac{2010.2009-2}{2008+2008.2010}+\frac{-2009.20102010}{20092009.2010}\)