Chứng minh đa thức sau không phụ thuộc vào x:
C = (x2 - 1)(x2 + 1)(x4 + 1)(x8 + 1)(x16 + 1)(x32 + 1) - x64
Cho 1 1 − x + 1 1 + x + 2 1 + x 2 + 4 1 + x 4 + 8 1 + x 8 = ... 1 − x 16 . Số thích hợp điền vào chỗ trống là?
A. 16
B. 8
C. 4
D. 20
Thực hiện các phép tính sau:
a) y 4 x 2 − 2 xy + 4 x 2 y 2 − 4 xy với x ≠ 0 và y ≠ 2 x ;
b) 1 1 − x + 1 1 + x + 2 1 + x 2 + 4 1 + x 4 + 8 1 + x 8 + 16 1 + x 16 với x ≠ ± 1 .
rút gọn phân thức
1 . 8x3-125 / 3(x-3)-(x-3)(8-4x)
2 . x4-y4 / y3-x3
3 . x10-x8-x7-x6-x5-x4-x3-x2+1 / x30+x24+x18+x12+x6+1
Rút gọn phân thức: Q = x 10 - x 8 - x 7 + x 6 + x 5 + x 4 - x 3 - x 2 + 1 x 30 + x 24 + x 18 + x 12 + x 6 + 1
Rút gọn biểu thức A = 1 1 - x + 1 1 + x + 2 1 + x 2 + 4 1 + x 4 + 8 1 + x 8
Rút gọn biểu thức:
x(x + y)(x2+y2)(x4+y4)(x8+y8)(x - y) + xy16
Thu gọn phân thức: M = x 10 − x 8 − x 7 + x 6 + x 4 − x 2 − x + 1 x 30 + x 24 + x 18 + x 12 + x 6 + 1 .
Rút gọn
a) (x2−1)3−(x4+x2+1)(x2−1)(x2−1)3−(x4+x2+1)(x2−1)
b) (x4−3x2+9)(−x2+3)−(3+x2)3(x4−3x2+9)(−x2+3)−(3+x2)3
c) (x+y)3−(x−y)3−6x2y
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
6) x2 + 2xy + y2 - x - y - 12
7) (x + 2)(x +3)(x + 4)(x + 5) - 24
8) 4x4 - 32x2 + 1
9) 3(x4 + x2 + 1) - (x2 + x + 1)2
10) 64x4 + y4
11) a6 + a4 + a2b2 + b4 - b6
12) x3 + 3xy + y3 - 1
13) 4x4 + 4x3 + 5x2 + 2x + 1
14) x8 + x + 1
15) x8 + 3x4 + 4
16) 3x2 + 22xy + 11x + 37y + 7y2 +10
17) x4 - 8x + 63