Đặt \(A=1+7^2+7^3+7^4+...+7^{99}\)
\(\Rightarrow7A=7\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow7A=7+7^3+7^4+7^5+...+7^{100}\)
\(\Rightarrow7A-A=\left(7+7^3+7^4+7^5+...+7^{100}\right)-\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow6A=7^{100}-1\)
\(\Rightarrow A=\frac{7^{100}-1}{6}\)
đặt S = 1 + 72 + 73 + 74 + .... + 799
=> 7S = 7 + 73 + 74 + 75 + .... 7100
=> 7S - S = (7 + 73 + 74 + 75 + .... + 7100) - (1 + 72 + 73 + 74 + .... + 799)
=> 6S = (7 + 7100) - (1 + 72)
=> 6S = (7 - 1) + (7100 - 72)
=> 6S = 6 + 7100 - 72
=> S = \(\frac{6+7^{100}-7^2}{6}\)