Chứng mình đa thức B(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3 luôn nhận giá trị dương với mọi giá trị của biến x
cho đa thức:
P(x)- 5x3+2x4-x2+3x2-x3-2x4+1-4x3
a, Thu gọn vắp sếp các hạng tuwrcuar đa thức trên theo lỹ thừa giảm của biến
b,Tính P(1) và P(-1)
c,Chứng tỏ rằng đa thức trên không có nghiệm
Bài 1. Cho hai đa thức:
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính. P(x) + Q (x), P(x) - Q(x), Q(x) - P(x).
Bài 2. Cho hai đa thức:
P(x) = x5 + 5 - 8x4 + 2x3 + x + 5x4 + x2 - 4x3
Q(x) = (3x5 + x4 - 4x) - ( 4x3 - 7 + 2x4 + 3x5)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính P(x) + Q(x), P(x) - Q(x)
Bài 5. Cho hai đa thức:
P(x) = 2x4 + 2x3 - 3x2 + x +6
Q(x) = x4 - x3 - x2 + 2x + 1
a) Tính P(x) + Q(x), P(x) - Q(x)
b) Tính và P(x) - 2Q(x).
Bài 6. Cho đa thức P(x) = 2x4 - x2 +x - 2.
Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x4 + x3 + 2x2 + x + 1
b) P(x) - H(x) = x4 - x3 + x2 - 2
c) R(x) - P(x) = 2x3 + x2 + 1
Cho A(x) = 2x4 + 4x3 - 3x2 - 4x + 1
Tính A(x) : (x2-1)
Cho đa thức
P ( x ) = 3 x 2 - 3 x - 1 + x 4 Q ( x ) = 5 x 3 + 2 x 4 - x 2 - 5 x 3 - x 4 + 1 + 3 x 2 + 5 x 2
Tìm đa thức R(x) sao cho P ( x ) + R ( x ) = Q ( x )
A. 4 x 2 + 3 x + 2
B. 4 x 2 - 3 x + 2
C. - 4 x 2 + 3 x + 2
D. 4 x 2 + 3 x - 2
Cho 2 đa thức : P(x)=3x3−x2−2x4+3+2x3+x+3x4−x2−2x4+3+2x3+x+3x4 và Q(x)=−x4+x2=4x3−2+2x2−x−x3−x4+x2=4x3−2+2x2−x−x3
a) Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x)
c) Chứng tỏ rằng đa thức H(x)=P(x)+Q(x) không có nghiệm
Giúp mik nha
Cho đa thức: P(x) = 2x4 + 5x3 – 2x2 + 4x2 – x4 – 4x3 + 2 – x4
a/ Thu gọn và sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm dần của biến.
b/ Tính P(1) và P(-1)
Cho đa thức P(x) = 5x3+ 2x4–x2–5x3–x4+ 1 +3x2+ 5x2. Hệ số cao nhất là hệ số tự do của đa thức lần lượt là
Cho đa thức Q(x) = x2 + 2x4 + 4x3 – 5x6 + 3x2 – 4x – 1
Chỉ ra các hệ số khác 0 của Q(x)