1. CMR: Nếu a,b,c là độ dài 3 cạnh tam giác thì:
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
2. PTĐT thành nhân tử
a) \(a^6+a^4+a^2b^2+b^4+b^6\)
b) \(a^3+3ab+b^3-1\)
c) \(a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)-c^2a^2\left(c-a\right)\)
d) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
PTĐT thành nhân tử (PP xét giá trị riêng)
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
c) \(\left(a+b+c\right)^5-a^5-b^5-c^5\)
d) \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
giup mình câu này nhé cho a+b+c=0 cmr a^5.(b^2+c^2)+b^5.(a^2+c^2)+c^5.(a^2+b^2)=1/2(a^3+b^3+c^3).(a^4+b^4+c^4)
ai nhanh 10 tick
giúp mình câu này nhé cho a+b+c=0 cmr a^5.(b^2+c^2)+b^5.(a^2+c^2)+c^5.(a^2+b^2)=1/2(a^3+b^3+c^3).(a^4+b^4+c^4)
ai đúng 10 tick
Cho a, b, c > 0. CM:
a)\(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)
b)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{b+c}{a^2+bc}+\frac{c+a}{b^2+ac}+\frac{a+b}{c^2+ab}\)
c)\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Làm được câu nào thì làm giúp mình câu đó nhé!
Phân tích thành nhân tử :
c, a^2 b^2(a-b) +b^2 c^2(b-c) +c^2 a^2(c-a)
d, a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) -2abc-a^3-b^3-c^3
e, a^4(b-c)+b^4(c-a)+c^4(a-b)
66. Phân tích đa thức thành nhân tử:
a) \(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
b) \(a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)
c) \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
d) \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
e) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
Phân tích đa thức thành nhân tử :
a) \(â\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
b) \(a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)
c) \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
d) \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
e) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
Cho a+b+c=0 CMR
1. a^4 + b^4 + c^4 = 2( a^2b^2 + b^2c^2 + c^2a^2 )
2. a^4 + b^4 + c^4 = 2( ab + bc + ca )^2
3. a^4 + b^4 + c^4 = (a^2 + b^2 + c^2)^2 /2