NP

PTĐTTNT:

\(x^4+4x^3+5x^2+7x+3\)

 

ZZ
26 tháng 8 2019 lúc 16:14

Hệ số bất định thử xem sao nha ! Check luôn nha Nguyễn Tấn Phát ~

Nháp:

Ta nhẩm nghiệm được \(a=-3\) nên khi phân tích nó sẽ có nhân tử là \(x+3\)

Giả sử khi phân tích thành nhân tử nó sẽ có dạng:\(\left(x+3\right)\left(x^3+ax^2+bx+c\right)\)

\(=x^4+ax^3+bx^2+cx+3x^3+3ax^2+3bx+3c\)

\(=x^4+\left(a+3\right)x^3+\left(3a+b\right)x^2+\left(c+3b\right)x+3c\)

Mà \(\left(x+3\right)\left(x^3+ax^2+bx+c\right)=x^4+4x^3+5x^2+7x+3\)

Cân bằng hệ số ta được:

\(a=1;b=2;c=1\)

Khi đó \(x^4+4x^3+5x^2+7x+3=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)

Bài làm

Ta có:

\(x^4+4x^3+5x^2+7x+3\)

\(=\left(x^4+x^3+2x^2+x\right)+\left(3x^3+3x^2+6x+3\right)\)

\(=x\left(x^3+x^2+2x+1\right)+3\left(x^3+x^2+2x+1\right)\)

\(=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)

P/S:Mik nghĩ đến đây là hết rồi:3

Bình luận (0)

Các câu hỏi tương tự
P1
Xem chi tiết
VA
Xem chi tiết
CC
Xem chi tiết
HH
Xem chi tiết
HD
Xem chi tiết
IV
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
VK
Xem chi tiết