a) Áp dụng hằng đằng thức hiệu của 2 bình phương ta có
\(x^2-7=x^2-\left(\sqrt{7}\right)^2=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
Bài giải
\(a,\text{ }x^2-7=x^2-\left(\sqrt{7}\right)^2=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
\(b,\text{ }4x-5=\left(2x\right)^2-\left(\sqrt{5}\right)^2=\left(2x-\sqrt{5}\right)\left(2x+\sqrt{5}\right)\)
\(x^2-7=x^2-\sqrt{7}^2=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
\(4x-5=\left(2\sqrt{x}\right)^2-\sqrt{5}^2=\left(2\sqrt{x}-\sqrt{5}\right)\left(2\sqrt{x}+\sqrt{5}\right)\)
\(x^2-7=x^2-\left(\sqrt{7}\right)^2=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
\(4x-5=\left(2x\right)^2-\left(\sqrt{5}\right)^2=\left(2x-\sqrt{5}\right)\left(2x+\sqrt{5}\right)\)