NA

Phân tích đa thức thành nhân tử

X^3+y^3+z^3+3xyz

TT
28 tháng 9 2015 lúc 16:14

\(x^3+y^3+z^3+3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3+3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y+z\right)+z^3\)

\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+xz\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3xz\right]\)

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Bình luận (0)
H24
28 tháng 9 2015 lúc 16:19

Trần Đức Thắng sai rùi X^3+y^3+z^3+3xyz cơ mà có phải X^3+y^3+z^3-3xyz đâu mà làm vậy 

Bình luận (0)

Các câu hỏi tương tự
KB
Xem chi tiết
VH
Xem chi tiết
TT
Xem chi tiết
TC
Xem chi tiết
NN
Xem chi tiết
CT
Xem chi tiết
VN
Xem chi tiết
BL
Xem chi tiết
PN
Xem chi tiết