Đặt y-z=-[(x-y)+(z-x)]
Thay vào rồi cm nha bạn
Đặt y-z=-[(x-y)+(z-x)]
Thay vào rồi cm nha bạn
phân tích đa thức thành nhân tử \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
Phân tích đa thức thành nhân tử:
\(A=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(x-y+z\right)^3-\left(-x+y+z\right)^3\)
phân tích đa thức thành nhân tử:
\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
phân tích đa thức thành nhân tử:
\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
phân tích đa thức thành nhân tử:
a.\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
b.\(x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-z^2\right)+xyz\left(xyz-1\right)\)
Phân tích đa thức sau thành nhân tử :
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x^{ }\right)^3\)
phân tích đa thức sau thành nhân tử:\(\left(x^3-y^3\right)^3+\left(y^3+z^3\right)^3-\left(z^3+x^3\right)^3\)
\(\text{Phân tích đa thức thành nhân tử:}\)
\(a.\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(b.\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
Phân tích đa thức thành nhân tử :
a) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
b)\(\left(x+y\right)^3-x^3-y^3\)
c)\(\left(x+y+z\right)^3-x^3-y^3-z^3\)