\(x^2+y^2-x^2y^2+xy-x-y\)\(=\left(xy-x\right)+\left(y^2-y\right)-\left(x^2y^2-x^2\right)\)
\(=x\left(y-1\right)+y\left(y-1\right)-x^2\left(y^2-1\right)\)\(=\left(y-1\right)\left[x+y-x^2\left(y+1\right)\right]\)
\(=\left(y-1\right)\left(x+y-x^2y-x^2\right)\)\(=\left(y-1\right)\left[x\left(1-x\right)+y\left(1-x^2\right)\right]\)
\(=\left(y-1\right)\left(1-x\right)\left[x+y\left(1+x\right)\right]=\left(y-1\right)\left(1-x\right)\left(xy+x+y\right)\)