\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\) (sửa đề)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(y=x^2+5x+4\), thay vào đa thức, ta được:
\(y\left(y+2\right)-24\)
\(=y^2+2y-24\)
\(=\left(y^2+2y+1\right)-25\)
\(=\left(y+1\right)^2-5^2\)
\(=\left(y+1-5\right)\left(y+1+5\right)\)
\(=\left(y-4\right)\left(y+6\right)\)
\(=\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)