Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

DN

Phân tích đa thức thành nhân tử:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}\)

PH
24 tháng 3 2019 lúc 10:20

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=\left(\frac{1}{a}+\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3-3.\frac{1}{a}.\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)-\frac{3}{abc}\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2-\left(\frac{1}{a}+\frac{1}{b}\right).\frac{1}{c}+\frac{1}{c^2}\right]-3.\frac{1}{a}.\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}-\frac{1}{ac}-\frac{1}{bc}+\frac{1}{c^2}\right)-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right)\)

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết
VV
Xem chi tiết
LT
Xem chi tiết
CH
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
AH
Xem chi tiết